Networks for Cloud Computing

Paul Murray, Senior Researcher Cloud and Security Lab HP Labs, Bristol 6/9/2011

Data Centre Networks for Cloud Computing

Multi-tenancy and Security

- Host multiple customers on single shared infrastructure
- Allow each customer to configure their own network topology to suit application needs
- Data and performance isolation between customers
- Allow controlled and efficient inter-communication between customers if required and permitted

Large scale

Automation

Flexibility

Performance

SPAIN: VLAN-based load management

Mudigonda et al, NSDI 2010

OpenFlow-based management

Support for cloud computing

Implemented OpenFlow for HP ProCurve

- Switch firmware patch
- ONE module controller

Load balancing traffic control protocols

Virtual network implementation based on OpenFlow

Diverter

Isolate customer resources into *Cells*

- Cell is a collection of virtual resources
- Cell has a single owner

Each Cell can have its own virtual network topology

- Cells consist of several Subnets
- Cell owner can define network policies
- Security: define who can communicate with VMs
- QoS: define bandwidth limits for VMs

Diverter Virtual Network Topology

Globally managed virtual IP address space representing virtual network topologies

Diverter Virtualized Endpoint Architecture

Isolated Driver Domain

- Owns and controls physical hardware
- Intercepts packets from/to guests
- Enforces network policies (packet filtering + rate controlling)

Wide Area Networking for Cloud Computing

Transition to cloud model for infrastructure provisioning

- Multi-tenancy
- Automation
- · Flexibility
- · Performance
- Cost models

Take advantage of distribution

Current Situation from Network Perspective

Internet: a best effort bit pipe

Network-based VPNs are widespread technology in enterprise networks

- Connectivity between geographically dispersed sites
- Outsource complexity of running the network to a service provider
- Offers operators the possibility to become more than just bit pipe providers
- VPNs will likely continue to be dominant in the foreseeable future

VPNs were not conceived to deal with dynamic properties of clouds

- Elasticity
- Reconfiguration
- Resource mobility
- On-demand allocation of resources

Telstra Australia Network

Anonymised NetFlow data in Yahoo!'s DCs

Connected via VPNs Hierarchy of DCs (PAO, DAX, DCP are core DCs; UK, HK are satellite) 45% of the traffic spans a single DC

Large Data Movement

Maximize the backup volume from NY to Palo Alto, 3 hour window early in the morning (e.g. 3-6 am): Stitching unutilized bandwidth across different datacenters

·Bypassing the problem of misaligned bandwidth

Images from Laoutaris et al. SIGCOMM 2011

SAIL – Scalable Adaptive Internet Solutions

EU Call FP7-ICT-2009-5 Large-scale IP

- Industry-led consortium of 24 partners
- Operators, vendors, and research institutes

SAIL's main objective

Future network concepts and technologies

Technical objectives

- Network of Information (NetInf): application support via an information-centric paradigm
- Open Connectivity Services (OConS): signalling and control interfaces for heterogeneous media technologies
- Cloud Networking (CloNe): integration of networking with cloud computing via NW virtualization and self-management

CloNe: Cloud Networking

Distribute computing and storage resources through the network

- Sometimes the data centers are too far away
- Maximize end-user experience
- Reduce the stress over the network

Provide *dynamic* connectivity services

- Dynamic provisioning of network services for specific tasks
- On-demand, pay-as-you-go
- Customer-cloud and datacenter-datacenter connectivity

CloNe Use Cases

Elastic Video Distribution

- Elastic live video distribution
- Elastic video on-demand distribution
- Distributed gaming
- Video conferencing

Dynamic Enterprise

- Media production
- Remote auditing
- Business goal management
- Virtual desktop

CloNe High Level Archtiecture

Currently under development

NOTE: Steps 5-7 are optional an only apply when the local domain lacks enough resources. Darker colour indicate some commercial or research products already exist that could be used.

Thank you

